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For a dynamical system witJh cosymmetry, a study is made of the bifurcation in which a cycle branches off from an equilibrium 
in a continuous one-parameter family of equilibria, as the parameter passes through a critical value. Unlike the classical situation 
that occurs when the equiliibrium is isolated, a self-excited oscillatory mode generally branches off with delay relative to the 
parameter. Another characteristic difference is the possibility of supercritical branching of an unstable limit cycle. © 1998 Elsevier 
Science Ltd. All rights reserved. 

Cosymmetry in a dynmnical system may be a natural reason for the existence of a continuous family 
of equilibria [1, 2]. In a parametrized system such families may branch off from isolated equilibria. 
This type of bifurcation occurs in the problem of plane seepage convection of single-component 
[1, 3] and multicomponent liquids; the presence of heat sources is also allowed., Cosymmetry and 
the attendant bifurcation phenomena also arise in problems of classical mechanics, for example when 
the potential energy of a natural mechanical system is invariant with respect to some transformation 
group.§ 

It is natural to ask whether further bifurcations of the family may occur as the parameter is varied. 
In addition to the static bifurcations of collapse, merging, creation and disappearance of families of 
equilibria, a local bifurcation may also occur due to the onset of oscillatory instability of equilibria in 
the family and the evolution of a self-excited oscillatory periodic mode of motion. This is the topic of 
the present paper, which presents the contents of two previous preprints.¶, U 

There are different approaches to the problem of the onset of periodic self-excited oscillations 
[14, 5]. In this paper we will use the Lyapunov-Schmidt method, as developed in [6]. Fortunately, when 
this method is applied to specific problems it is not necessary to return each time to an analysis of the 
branching equation. One simply looks for a solution as a power series in the supercriticality or neutral 
amplitude [7]. 

When a neutral oscillatory mode appears in one of the equilibria of an initially stable family and the 
parameter is increased further, this generally leads to the appearance of only a small unstable arc. A 
limit cycle branches off from one end of the arc not immediately, but at a larger parameter value. This 
effectma delay of the q~cle-creation bifurcation--is a new specific feature of systems with cosymmetry. 
Also worthy of mention is the possibility of supercritical branching of an unstable ,2-'ycle. For brevity-- 
and only for that reasonDwe will confine our attention here to analytic vector fields in a Hilbert space. 
The passage to abstract parabolic equations in a Banach space and to the equations of mathematical 
physics is performed directly, without any change in the formalism (see [6]). 
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1. F O R M U L A T I O N  OF THE P R O B L E M  

Consider an ordinary differential equation with a real parameter ~, in a Hilbert space H 

O=F(O,~) (1.1) 

We will assume that the operator F: H x R ~ H is analytic and that it admits of a cosymmetry 
L: H ~ H independent of ~,. This means that for all 0 e H, ~, ~ R, 

(F(O,L), LO) = 0 (1.2) 

Suppose that, for some value ~ of the parameter ~,, there is a known non-cosymmetric solution 00 
of Eq. (1.1). This means that 

F(00,k0)=0,  L00 S0  (1.3) 

Let us assume that the spectrum a(A0) of the derivativeA0 = F'0(00, ~0) is a union of three spectral 
sets a+(A0), a_(A0), o0(A0) situated in the interior of the right half-plane, in the interior of the left half- 
plane and on the imaginary axis respectively. It will also be assumed that the neutral spectrum a0(A0) 
contains three simple eigenvalues 0, --.ito0 but no other points of the imaginary axis; actually, the only 
essential condition is that it should contain no points in(% for n = ___2, +3. 

Note that the point 0 belongs to the spectrum 6(A0), because L00 is an eigenvector of the adjoint 
operatorA~ [1] 

A~L00 =0  (1.4) 

Our assumption that zero is a simple eigenvalue means that there is no further degeneracy, apart from 
the unavoidable degeneracy due to the existence of the cosymmetry (1.2) and the non-eosymmetry of 
the equilibrium (L00 ~ 0). Under these conditions, the eosymmetrie version of the Implicit Function 
theorem is applicable (Theorem 1 in [1]; for generalizations see [8, 9]). Hence Eq. (1.1) has a one- 
parameter family of equilibria s ~ c (s), s e (-rl, •) for some 11 > 0, so that 

F(c(s),ko)=O, c(0)=O 0 (1.5) 

In this situation there are no other equilibria in the neighbourhood of the point 00, and 0 is a simple 
eigenvalue of the operator As = F'e(c(s), Lo for all s. The corresponding eigenveetor is Ts = c'(s)---a 
tangent vector to the family. As the eigenvalue is simple, we have 0'0, L00) ~ 0, so that, scaling the 
parameter s if necessary, we may assume that 

Ao? 0 = 0, (¥0, L00) = 1 (1.6) 

When L, being varied, passes through ~ ,  the family c(s) does not disappear but is only slightly 
deformed, and in this sense it is regular. This follows from the cosymmetric version of the Implicit 
Function theorem with a parameter [8, 9], but it will be established below independently. 

The fact that the spectrum of A0 contains pure imaginary eigenvalues means that k0 is a critical value 
of oscillatory instability of the equilibrium 00. It is natural to ask whether the equilibria of the family 
are stable at near-critical values of ~, and whether limit cycles may branch off from the family of equilibria 
c(s). The present paper is devoted to answering these questions. 

2. THE L I N E A R I Z E D  EQUATION 

Introducing a new time variable x = to0 t, we write the equation, linearized at the equilibrium 00, as 

Tu =- t%u'-  Aou = f (2.1) 

where the prime denotes differentiation with respect to x andf  = f(x) is a given continuous 2re-periodic 
vector function. We wish to find a 2n-periodic solution of Eq. (2.1). 

The homogeneous equation Tu = 0 has three independent 2n-periodic solutions: ?0, q ~e~x, ~ *e-~x, where 
~p is an eigenvector of the operatorA0: A0~ = itt~0cp. The homogeneous adjoint equation 
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T*w - - t%w'-A~w = 0 (2.2) 

also has three independent periodic solutions: L00, Oe ;x, O*e -ix, where • is an eigenvector of the operator 

A~O = -io~00 (2.3) 

Since we have stiptdated that --.it00 are simple eigenvalues, we can introduce the normalization 

(~o, ~ )  = 1 (2 .4)  

Let E+, E0 be the spectral projections corresponding to the spectral sets o+ (A0), tL(A0), t~0(A0). The 
projection E0 is given by the formula 

Eoh = (h, LO o)Yo + (h, 0)~o + (h, • °)q~* (2.5) 

for any h of the complex hull ~ of the space H. We also define the complementary projection E~ by 
E ' o = I - E o = E +  +E_. 

Lemma (The Solvability Condition). Equation (2.1) with a real continuous vector functionfhas a 2n- 
continuous solution if and only i f f  satisfies the following orthogonality condition 

((f,.)e-n) = O, ((f),LOo) = 0 (2.6) 

where the angular brackets denote averaging over time 

(f) = ~!" f(x)dx (2.7) 

If condition (2.6) is satisfied, all 2x-periodic solutions of Eq. (2.1) are defined by the equality 

• ~ _ I o  + . 

u(x)---- I e(~-s)~6 E-f(s)  ds -  J e(:-s)Ad E+f(s)ds+atP en +a*~P "e-i~ +~Yo 
- o o  I[ 

(2.8) 

where A~, A ~ are the restrictions of A0 to the subspaces im E_ and im E+, respectively, and oc ~ C, J3 
• R are arbitrary constants. 

This result is a special case of well-known theorems. For general equations with bounded operator 
coefficients, such theorems may be found in [10]; similar abstract parabolic equations are considered 
in [11]. 

Equation (2.1) may also be solved by Fourier analysis. If the solvability conditions (2.6) are satisfied 
and the vector functie,n f has a Fourier expansion 

f(x)= 2: i,~ • (2.9) fn e , f-n =fn 
I 1 = - - o o  

then the periodic solution (2.8) may be written in the form 

u('c) = i (ino~ol - Ao)-' fn eint + (itOol'- A~ )-1E~fleit _ (itool, +A ~ )-, E;f_le-it - 
n . ~ - - ¢ o  

n ~ t O , ~  | 

-Ao-t Eofo + ¢xtP e~ + ¢X "tP •e-it + ~Yo (2.10) 

whereA~ is the restriction of A0 on the complementary space imE6 to the neutral subspace imE0 and 
I" is the identity operator of this subspace. 

We shall need the following decomposition of the Hilbert space Hp - L2(S 1, H) of vector functions 
on the circle S 1 with wdues in H. Let J~p be the subspace of Hp of all vector functions of the form 

u(x)  = axle ~ +ct*~o*e -~  + 13Yo; ct e C ,  13 e R (2 .11)  
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Define a projection l-I" Hp ---) ~ by setting, for any vector f imct ionf  ~ Hp 

(rlf>(x>=((f,O>e-i~)ei~q~+((f,O*>ei~)e-i~q¢ +((f),L0o) 7o (2.12) 

Let/-/'. denote the complementary subspace and rl' the complementary projection, so that Hp = 
= 1 - r l .  

3,. T H E  C Y C L E - B R A N C H I N G  E Q U A T I O N  

We will seek a periodic solution of Eq. (1.1) with unknown p e d o d p  = 2n/co, in the form 

0(t) = 00 + u(x), x = cot (3.1) 

Substituting into (1.1), we get an equation for u, o~ 

du 
¢o-~ = F(0 o + u,k) (3.2) 

We define Z = ko + 8, co = COo + Ix, assuming that 8 and Ix, like u, are small. Equation (3.2) can be 
rewritten as 

Tu = - laa '+F(00 +u,~0 + 8 ) -  Aou (3.3) 

We now use the Lyapunov-Schmidt method as developed in [6], 
Represent  u in the form u = Flu + II'u, or 

u(x) = a W  e` + a '~*e  -n + ~ o  +~ (x) (3.4) 

The vector ~ = Fl'u must satisfy the orthogonality conditions 

((u,dP)e-iX)=O, ((o ),L0o)=0 (3.5) 

where a ¢ C, 13 ¢ R are unknown constants and ~ ~ H ? is an unknown vector function. 
The problem is invariant to time shifts x --,, x + %. I-(ence, together with any solution a,  13, v(x), the 

whole orbit of the action of the rotation group of the circle {oe '~0, 13, ~('r + x0)} consists of solutions. 
Choosing x0 so that a > 0, we rewrite (3.4) as 

u(x) = aW(%) + ~To +u (x), ¥ ( x )  = q~e n + ~p *e -n (3.6) 

Equation (3.3) is equivalent to the system 

rv  = n ' f  (3.7) 
H f = 0  

f = -ita~l t ' - I tu  ' +F (0  o + aW + [$Yo +u,  k o + 8) - A o ( a ~  +u ) (3.8) 

Equation (3.8) is equivalent to two equations 

g - - ( ( f ,  dO)e-iX)=O, h- ((f),LOo) = 0 (3.9) 

Using Eq. (3.7), we express ~ in terms of a, 13, It, 8. Substitution into (3.9) then yields the system of 
cycle-branching equations. 

The restriction T1 of  the operator T to H i is an invertible operator. Hence the Implicit Function 
theorem is applicable to Eq. (3.7) in a neighbourhood of the point ~ = 0, a = 13 = It = 8 = 0. For any 
small oq 13, It and 8, Eq. (3.7) has a unique solution in the neighbourhood of the zero o f / / ~  which is 
analytic as a function of  a,  13, It and 8 

u =  ~- un,,~' akl3tIt"8" (3.10) 
k,l,m,n=O 

The coefficients ~tamn are determined successively after substituting (3.10) into (3.7). When that is done 
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one uses the Taylor expansion of the operator F in the neighbourhood of the point 0o, ~o in powers of 
0-0o = u,X-Xo= 5 

F(0 o +u,7~ o +8)= ~ l-..~--Fetxt(Oo,)~.o)UtSt (3.11) 
t.t=o k!l! 

The first few terms of this expansion are . 

F(Oo+U,)%+5)=Aou + FoTfi + I F~I* 2 +SE,',u+--F,,~~̂  2 ~52 +!6F~" u3+~F~'~ u2+... (3.12) 

The prime denotes differentiation with respect to 0; the subscript zero indicates that the derivative is 
to be calculated at the point 00, ~ .  

It is convenient to continue in the following order. Expanding F in powers of ~ I~, ~t and 5, we 
successively examine terms of the first, second, etc. degree. Once a coefficient fp.~,,n has been determined 
in the course of this recurrent procedure, we can find ~, , , ,  by solving the equation T~pam,, = I]~fpam,,. 
We then determine the: contributions of this term to the branching equation (3.9), which we rewrite as 

~g,t.,~o:[i'gt'~5 ~ =0, ~. hja..ot*~tB"W' =0  (3.13) 
0 0 

The coefficients X)ktmn, gktmn, hktm,, are given by the equalities 

vk,,,~ = T1-ll'I'ft.t,,m, g~,,m =((ftam,~) e-/~) 

htt_ =((fld, M),LOo) (3.14) 

Of the first-order terms in the expansion off ,  onlyf0ool f f i  Fox does not vanish. The expansions in 
system (3.13) begin with the second degree, since Fo~. contains only non-vanishing harmonics, and 
differentiation of (1.2) gives the relationships 

( Fox, L0 o ) = (Fo~ x , L0 o ) ..... (Fo~k, L8 o ) ..... 0 (3.15) 

The expansion for ~ is 

v = 8Vooo, + tz2V~oo +ot~vttoo + ctSVloot + ~2vo2oo + ~SVo,ol + 82Vooo2 +ct~:~oo+... (3.16) 

The coefficients are given by the formulae 

VO001 = Tl-lf0001 = -A~-IF0k, 02000 ---- 2TI-I['I'F~¥2 
= , lOO, = 

Vo2oo = 1  T(,I.I, Fo,~,~ ' Vo,o, = T_q_l,[Fo,,(¥o,Voool)+ F~'~T° ] 
2 

U 3000 ---- Tl'l l"l' [ 6  F~'~/3 + F~'(¥,v 2000 )] 

(3.17) 

Correspondingly the fu~t equation of (3.13) takes the form 

-icztt(q~, O) + ¢xl~g I ioo + ¢XSgI001 + CX 3g3000 + .... 0 (3.18) 

where we have written down all terms of the expansion up to and including the second degree, 
retaining only those cubic terms necessary for what follows. We have the following formulae for the 
coefficients 
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glloo = (Fff'(~O,¥o),O), glool = (6 ; ' (~o ,voool )+  Fffx~o,*) 

,, -/x 1 ~ 3 -/x 

(3.19) 

The expansion of the left-hand side of the second equation of (3.13) may be written in the form 

ct2h2000 + 0{2~h2100 + 0~2~h2001 + ot4h4000 + . . . .  0 (3.20) 

h21oo = (<Fot(~l,U llOO)>,LOo )+( F;('~o,<li 2ooo>),LOo )+l  (<Fda(~l, ~41, ~o)>,LOo ) 

, oo, = +  ooo)> + + 

1 , 2 1 , 

We have taken into consideration here that (~)  = 0 and therefore also (1)100) = 0. Terms in (3.20) with 
monomials 13 m and Bn also vanish, as do all terms not containing cz. This follows from the equality 

h(0, 13,~t, 5) = 0 (3.21) 

To prove this, consider Eq. (3.7) for ct = 0 in equilibrium. The assumptions of the Implicit Function 
Theorem in/-Fp are satisfied as before. By uniqueness, a) depends in this case only on 13 and ~i and not 
on ~t. The second branching equation (3.13) in the problem of equilibria is satisfied identically. Indeed, 
the equilibrium equation F(0, X) = 0 is equivalent in the neighbourhood of 00, X0 to 

F( O,3. ) - (  F(O,3. ),LOo )Yo = 0 (3.22) 

This equation obviously holds for equilibria. Conversely, if Eq. (3.22) holds, then, multiplying it scalarly by L0 and 
using (1.2) and (1.6), we conclude that the second term in (3.22) vanishes. This takes into account that ('to, L0) 
0 for 0 close to 00 - for 0 = 00 this quantity equals unity (by (1.6)). We have thus proved that the second branching 
equation, which may be written in the form (F(0, X), L00) = 0, holds identically for equilibria, which proves (3.21). 
At the same time, we have shown that the family of equilibria c(s), which exist at 3. = X0, admits of an extension 
with respect to the parameter 3.--this also follows from the general results of [8, 9]. We also note another conclusion 
from the previous argument: the expansion (3.10) for u does not contain monomials Bt~tm5 n with m > 0. 

It remains to remark that Eq. (3.20) contains m o n o m i a l s  {xk~l~l.m~ n with even k only, since a time shift 
x ,--> x + rc leaves the equation unchanged because of the invariance of time averages to shifts, while, 
on the other hand, this time shift is equivalent to the change of variable tx ,--> -or. 

4. C Y C L E - C R E A T I N G  B I F U R C A T I O N  

Theorem 1. Let the right-hand side F of Eq. (1.1) be analytic in a neighbourhood of the point 00, X0, 
where 00 is an equilibrium: F(00, X0) = 0, and let the equation have an analytic cosymmetry independent 
of the parameter X. Assume that the following conditions hold: 

1. the equilibrium 00 is not cosymmetric: L00 ~ 0; 
2. the spectrum of the derivate A0 -- F~(00, Xo) is the union of a pair of spectral sets o_, o+ in 

the interiors of the left and right half-planes, respectively, and a spectral set o0 on the imaginary 
axis containing three simple eigenvalues 0, --.ito0, o)0 > 0 but not containing any of the points int~,  n 
= __ .2  . . . . .  

Then the following statements hold: 
1. for small 5 = Z. - Xo a set of equilibria c(s, 8) exists which depends analytically on (s, 8) 

(-So, So) x (-4io, 8o), So > 0, 80 > 0, so that F(c(s, ~), X o + ~i) = 0; 
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2. if 

h2ooo = (F~'(~o, cp*), L0o) ~ 0 (4.1) 

then for small 8 there are no small limit cycles in the neighbourhood of 00. 

Proof. It has already been established that in the equilibrium problem 13 and 8 remain arbitrary, but 
is uniquely defined by Eq. (3.7). Consequently, for any small 8 and 13 we find equilibria 

"O := C(13,8) = 0 0 +~ '~0  + 8V0001 +132130200 + 13~V0101 +52/:0002 + "'" (4.2) 

The coefficients are given by formulae (3.17). 
The second stateme, nt follows at once from Eq. (3.20). This completes the proof. 

Theorem 2. In addition to the general assumptions of Theorem 1, assume that h2000 = 0 and that 

A = g3rO00 g~t00 # 0, A i = Ilgfn0o gnat # 0 (4.3) 
h40oo h210o 1112100 ]12001 

where the superscript r denotes the real part. Then a small limit cycle exists that shrinks as ~ --~ Xo 
to the  equilibrium El; moreover, this cycle is unique, depends analytically on the parameter  
~/~i = ~/(X - ~o) and can be found from the formula 

• A I O(t)=Oo+O~lEW(~ot)+[slgn(--~)(~l~O+VOOOl)+al2V2ooo] E2+. . .  (4.4) 

where terms of order e 3 and higher have been omitted. The small parameter e and the amplitude 
coefficients tx 1 and I~1 ;are given by the equalities 

~( --~) I~I 8, =Ig,~oo, g3~oool (4.5) 
e =  sign 5 ,  0~1 = , 13t ='~", 81 Ih20ol h4o001 

This solution is real for 8 > 0 if A1/A > 0, and for small 8 < 0 if A1/A < 0. The frequency co of the 
periodic motion depends on 5 and has the form 

c° = COo +IXl 8+ .... IXl = g~ool +(g~lOOSl + g ~ o o A t ) / A  (4 .6)  

Proof. Given that h 2 ~  = 0, dividing the branching equations (3.18) and (3.20) by cx and ct 2, respectively, 
we can reduce them to the following form (the superscript i denotes the imaginary part) 

_IX(tp, ~) + ~2g~o00 i " + [+gnoo + 8g~oo~ + . . . .  0 

O~2g~0 + ~g~i00 + 8g~00t + . . . .  0 (4.7) 

~2h4ooo + 13h210o + ~h2ool + . . . .  0 

The left-hand sides of these equations are analytic in ct 2, 13, 15, IX; we have omitted here terms of the 
second and higher orders with respect to these variables. The required results now follow directly by 
application of the Implicit Function theorem. 

A simpler expression may be obtained from the coefficient h2000 

h2ooo = -2 Re(Fo'q>, L6q~) = 2o  0 Im(q>,/6q>) (4.8) 

This is readily proved using the equality 

)., 0o] 1+ o (4.9) 

which holds for any complex vectors u and u; [,] denotes the bilinear product such that [u, u] - (u, u*). 
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In order to derive (4.9) it is sufficient to differentiate (1.2) twice with respect to 0, complexify and set 
a=oo,  X= Xo. 

One can also obtain the existence condition h200o -- 0 for small limit cycles using the following equality, 
which follows from (1.1) and (1.2) 

(0, LO) = 0 (4.10) 
¢ 

After substituting 0 = 0o + tx~ + 13y + ~ (see (3.6)) and averaging over time, one obtains the equality 
((~, L ~ ) )  = 0 in the principal order, which, by (4.8), is precisely the condition h2ooo = 0. 

Holonomic cosymmetries and halos. A cosymmetry L: H ---> H of an operator F: H ---> H is said to be 
holonomic if it is potential, so that L0 = grad q~(0). In that case the functional (potential) <p is an integral 
of the differential equation 0 = F0. A cosymmetry L is said to be quasi-holonomic if it becomes 
holonomic when multiplied by some nowhere-vanishing functional h, i.e. h(0)L0 = grad 9(0). 

We shall say that a cosymmetry L is essentially non-holonomic flit is not holonomic and not even quasi- 
holonomic. A cosymmetry may be regarded as a differential 1-form, and then an essentially non-holonomic 
cosymmetry is simple a contact form [12, 13]. The only holonomic linear operators are the self-adjoint 
operators, while the skew-symmetric operators are, on the contrary, the "most non-holonomic". 

In the problem under consideration, the case of holonomic (quasi-holonomic) cosymmetry is 
exceptional and easily analysed. 

Suppose that the general assumptions of Theorem 1 are satisfied and let L be a holonomic cosymmetry. 
Then the phase space H is partitioned into invariant level sets of the potential 9, which intersect the 
set of equilibria transversely near 00 at X near ~0. This follows from the condition that the zero eigenvalue 
of the derivative A0 = F'(00, %0) is simple; this requires, in addition to the kernel being one-dimensional, 
that (Y0, L00) * 0. Under the natural conditions that there be no further degeneracies, a local bifurcation 
occurs in each of the level sets near 00: a cycle branches off from the equilibrium. As the parameter 7L 
passes through its critical values %.(s) (where Z..(0) = %0), a limit cycle branches off from the equilibrium 
c(s, L.(s) - ~) .  As a result one obtains a halo - an invariant surface formed by limit cycles as they branch 
off. Subject to non-degeneracy conditions at 00 when % = ~0, which are maintained locally, either all 
these cycles are supercritical and stable, or they are all subcritical and unstable. 

5. STABILITY OF E Q U I L I B R I A  AND OF A LIMIT CYCLE 

If the operatorA0 = F'e(00, %0) has at least one eigenvalue in the right half-plane, the equilibria of 
the family c(s, 8) and the branching limit cycle are unstable. We will therefore assume that the spectrum 
~(A0) contains only the spectral set o_ and the triple of simple eigenvalues 0, -+ira0, too > 0. Then, the 
analysis of stability reduces to investigating the eigenvalues generated by disturbances of the triple; note 
that the formulae cited below for the perturbed eigenvalues remain valid in the general case. 

To investigate the stability of an equilibrium c(s, 8), we consider the spectrum of the operator 

A(s,  5)  = F" (c(s, 8), •o + 8) = ,4 o + sAto + 8Aoi + .... (5.1) 

which is an analytic function ofs and 8 in the neighbourhood of the point (0, 0) in the (s, 8) plane. The 
family c(s, 8) has the expansion 

C($, 5) = 0 0 + C10$ + C018 + C20 $2 + C 1155 + C0252 +.. .  (5 .2)  

whose coefficients are found from the equilibrium equation 

F(c(s, 8), ~'o + 8) = 0 (5.3) 

Substituting (5.2) into (5.3) we obtain a chain of equations 

AoCI0 ---- 0, .A0C01 = -Fo~ " 

1 
Aoc2o = - F 'C o, Aoclt = -F "(go,Cot)- 
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1 ~,, 2 1 E Aoco2 = - t'o Col - effxCol - 

27 

Here c10 = c~(0, 0) = Y0 is the tangent vector to the family at the point 00 when L = go. The other 
equations have the standard formA0u = f a n d  differ only in the funct ionsfon their right. The solvability 
condition (f, L0o) = 0 is automatically satisfied due to cosymmetry. The uniqueness of the solution is 
guaranteed by the condition (u, L00) = 0. 

The operators A 10, ,'t01 . . . .  in (5.1) are defined by the formulae 

AIoU= F~'(Cto,U), Aolu= F~'(cOl,U)+ Fo'gU, u~ H 

The eigenvalue zero is retained in the spectrum of the operator A(s, 8) and remains simple. The 
corresponding eigenw~ctor c's(s, 5) is tangent to the family. The eigenvalue ira0 of A0, being simple, 
generates a simple eigenvalue 

o = ico o +SOlo +8Ool +52020  "t" $8OI i 4" 82002"F... 

The eigenvector ¥ i.,; also analytic in s and 8 

= c,o + S¥io + 8¥o~+... 

The coefficients are found from the equationA(s, 8)10/= oaF; the term 9 is the unperturbed eigenveetor: 
A0q~ = iebq~. To deterrnine ¥01, ~10 . . . . .  as well as o10, o01 . . . .  , we have the equations 

10~10 -- (OI0!  - AIO)¢0, To~l/OI ~" (O011 -- A01 ){P 

1~2o = (O1o I - AIo)W'Io + (O2ol - A2o)q~ ..... To = A o - ROol 

The conditions for these equations to be solvable yield the equalities 

Olo = (Ato~P,O), Ool = (AolqU, O) 

0"20 = ((AI0 - O101)~#'i0 , Cl~) + (A2o~O , O) 

where • is an eigenvec:tor of  the operatorA~: A~O = -/O~oq~. 
The problem of whether the equilibrium c(s, 5) is stable may be solved by investigating the sign of 

the quantity 

R e o  = s Re010 +SReool+ . . .  

In the general case, Re o10 :g: 0, and then the equilibrium 00 at 8 = 0 is the common boundary of the 
stable and unstable ar¢~ of  the equilibrium family. By the Implicit Function theorem, applied to the 
equation Re 0 = 0, for small 8 the family is divided, as before, into a stable arc and an unstable arc by 
an equilibrium c(s0(8),8), where So(8) is determined from the condition Re a = 0. 

An interesting case occurs when ~ is the first critical value of  oscillatory instability of the 
equilibria. This means that Re 0 < 0 for 8 = 0 and small s ;e 0. In that case Re 010 = 0. In the general 
.t~osition, Re o20 < 0, Re 001 ;~ 0, and the principal part of the expansion of Re 0 is Re 0 = 
s2Re 020 + 8 Re o01 4- . . . .  For small 8 such that 8 Re 001 < 0, the local family is stable. But if 
8 Re 001 > 0, a small unstable arc exists whose endpoints s+ = s_+(8) are found from the equation 
Re 0 = 0, so that 

= + ] -  Re o0~ 
s_+ - V  R--'~°2o 8 + O(5), 8 --4 0 (5.4) 

The unstable arc (s_, s+) is enclosed by stable arcs. It is clear that the newly formed unstable arc at first 
grows rapidly. 

The results may be summarized as follows. 

Proposition 1. Let 00 be a non-cosymmetric equilibrium for ~. = ~ ,  so that F(00, ~0) = 0, L00 ;e 0. 
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Assume that the spectrum of the operator A0 satisfies the conditions specified at the beginning of this 
section. Then the following statements hold. 

1. For small s and 5 = L - ~ ,  there is a well-defined family of equilibria c(s, 8) which depends 
analytically on s and 5 near the point (0, 0). 

2. A pure imaginary eigenvalue ito0 generates in the stability spectrum of an equilibrium c(s, 5) an 
eigenvalue t~ = t~(s, 5) which depends analytically on s and 5 and is such that t~(0, 0) = ito0. 

3. If  Re ~10 ~ 0, then for small 5 the local family c(s, 5) contains a unique neutrally stable equilibrium 
00(5) = C(So(5),5) which depends analytically on 5 and divides the family into two arcs--stable and 
unstable. 

4. If Re al0 = 0, Re t~20 ~ 0 and Re o01 ~ 0, then as 5 passes through zero one obtains on the stable 
arc at 5 = 0 a neutrally stable equilibrium 00, which is the first point of an unstable arc which increases 
rapidly (by root law (5.4)). 

It remains to investigate the stability of the limit cycle that branches off. It is generated by a solution 
0c which is (2g/to)-periodic in t and may be written in the form 

0~ = 0c(x) = 00 + e0~ (x) + ~202 (x) + ... (5.5) 

(1) = O) 0 -I- ~ = tO 0 -I- (015  -I- (1)252 + . . .  

Once the existence of the solution and the convergence of the series (5.5) have been proved (see Section 
3), the coefficients 0j and to. are most simply found by direct substitution into Eq. (1.1). 

The stability of soluUon (5.5) may be investigated by the linearization method. Seeking a Floquet 
solution exp(ot)u(t) ,  where u is a (2g/to)-periodic vector function oft,  we arrive at an eigenvalue problem 
for (2n)-periodie vector functions of x 

du 
t o ~  + t~u = A( x)u (5.6) 

dx 

A('~) = F'(O c (f,), ~'0 + ~2 ) = Ao + EA l (,~) + f2 A2 (T,) + ... 

This eigenvalue problem can be treated by the methods of analytical perturbation theory, as is done 
in [6]. It then suffices to study a perturbation of the eigenvalues (Floquet exponents) 0, -+ito0. However, 
an answer is obtained more rapidly--at least, in the case of the general posit ion--if  one notes, first, 
that instability is possible only on the neutral manifold of the equilibrium 00 (in the extended system, 
where the parameter e is added as a new variable), and, second, that the Lyapunov-Schmidt method 
furnishes the solution specifically on the neutral manifold. Hence, analysis of the three-dimensional 
equation on the neutral manifold yields the same formulae as perturbation theory. 

To calculate the leading term of the equation on the neutral manifold, one can also use the method 
of averaging, which produces the following asymptotic formula for the solution of the Cauchy problem 
(and for the periodic solution) (see [4, 5]) 

0 c (t) = 0 o + etXc'(t')e~°ttp + ~a c ( t ' )e- /~tp  * + £2~(t')¥ 0 + . . .  

where t' = e2t is slow time. The equations for the unknown amplitudes o~ and 13 are immediately obtained 
in normal form by averaging over fast time t (or by the Lyapunov-Schmidt method) 

6~c =~c(g3ooo[o~cl2+g,,oo~+g,ootS) 

Changing in the plane of the variable o~ to polar coordinates a = I ~ [ and arg tXc, we separate out 
a system for ot and I~, which may be written in the form 

& = oc(aoc 2 +b[~-  pS), ~ = oc2(cot 2 + d ~ -  qS) 

where we have used the notation g~000 = a, g~100 = b, h4000 = c ,  h2100 = d, g~001 = -P, h2001 = -q. This 
system has a family of equilibria for which a = 0, I] = 130 is arbitrary. For equilibria with zero a one 
has a system 
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aot 2 + b~ = pS, ct~ 2 + d~ = q8 

The solution o~, 13s of this system is precisely the principal approximation of the Lyapunov--Schmidt 
method for the amplitude of  the cycle 

~8=~ 8' i~8=~8A 

Using linearization to investigate the stability of the equilibria of the family o~ = 0, 13 = 130 and the 
equilibrium t~, 13 s corresponding to the limit cycle, we obtain the following results. 

Proposition 2. Under  the assumptions of Theorem 2, a limit cycle branches off in the domain 8 > 0 
(6 < 0) if AA 1 > 0 (AA 1 < 0). It is stable if the two inequalities 2a + d < 0, A > 0 hold simultaneously, 
and unstable if at least one of them is badly violated: max{2a + d, - 6)  > 0. 

Now let L0 be the critical value of ~, corresponding to the first loss of stability of  the equilibria of the 
family, so that 

b = Reol0 = 0, Rea20 < 0, Ret~0t = - p  ~ 0 (5.7) 

To fix our ideas, we assume tha tp  < 0; then a small unstable arc exists for ~ > 0. 

Proposition 3. Suppose that the assumptions of Theorem 2 and conditions (5.7) are satisfied. Then 
a limit cycle branches off into the supercritical domain ~i > 0 and is stable ira < 0 and d < 0; it is unstable 
if a < 0 and d > 0. A s ubcritical cycle (6 < 0) exists for a > 0 and is unstable. 

These two propositions, together with Theorems 1 and 2, explain the effect of delay observed in cycle- 
creating bifurcation in cosymmetric systems. At the instant the unstable arc of equilibria is formed, the 
condition of Theorem 2 for the creation of a limit cycle is satisfied only in exceptional cases. The critical 
value for a limit cycle branching off from an end of the unstable arc is precisely the necessary condition 
for the condition of Theorem 2 to be satisfied. 

Cosymmetry and the ,.'lelay effect have already been observed in the simplest three-dimensional model 
of seepage convection with heat sources (see the footnotes t and II on the first page of  this article). 

I am indebted to L. (3. Kurakin, whose remarks helped to improve the text of this paper. 
This research was carried out with support from the Russian Foundation for Basic Research (96-01- 

01791) and the US National Science Foundation (DMS-9300752). 
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